INSTRUCTIONS FOR CANDIDATES

- Please answer FOUR questions from EACH group.
- Each question carries 10 marks. Total marks: 80.
- \mathbb{R} , \mathbb{C} , \mathbb{Z} and \mathbb{N} denote respectively the set of real numbers, set of complex numbers, set of all integers and set of all positive integers.

Group A

- 1. Let $a_n \in \mathbb{R}$, such that $\sum\limits_{n=1}^{\infty}|a_n|=\infty$ and $\sum\limits_{n=1}^{m}a_n \to a \in \mathbb{R}$ as $m \to \infty$. Let $a_n^+=\max\{a_n,0\}$. Show that $\sum\limits_{n=1}^{\infty}a_n^+=\infty$.
- 2. Let $E=\{(x,y,z)\in\mathbb{R}^3\mid x,y,z>0, xy+yz+zx=1\}$. Prove that there exists $(a,b,c)\in E$ such that $abc\geq xyz$, for all $(x,y,z)\in E$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function. Suppose there are sequences (x_n) and (y_n) such that $x_n < 0 < y_n$ for all $n \ge 1$ and $f(y_n) f(x_n) \to 0$ as $n \to \infty$. Prove that f is continuous at 0.
- 4. Do there exist continuous functions P and Q on [0,1] such that $y(t) = \sin(t^2)$ is a solution to y'' + Py' + Qy = 0 on $[\frac{1}{n}, 1]$ for all $n \ge 1$? Justify your answer.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \int_{e^{x^3 + x}}^{1 + e^{x^3 + x}} e^{r^2} dr$$

for all $x \in \mathbb{R}$. Prove that f is monotone.

6. Let $w=\{w(i,j)\}_{1\leq i,j\leq m}$ be an $m\times m$ symmetric matrix with nonnegative real entries such that w(i,j)=0 if and only if i=j. Show that $d(i,j)=\min\{\sum\limits_{j=0}^{k-1}w(i_j,i_{j+1})\mid k\geq 1, i_0=i, i_k=j,\ i_j\in\{1,...,m\}\}$ is a metric on $\{1,...,m\}$.

Group B

- 7. Factory A produces 1 bad watch in 100 and factory B produces 1 bad watch in 200. You are given two watches from one of the factories and you don't know which one.
 - (a) What is the probability that the second watch works?
 - (b) Given that the first watch works, what is the probability that the second watch works?
- 8. Let R be a commutative ring containing a field k as a sub-ring. Assume that R is a finite dimensional k-vector space. Show that every prime ideal of R is maximal.
- 9. Let p, q be prime numbers and $n \in \mathbb{N}$ such that $p \nmid n-1$. If $p \mid n^q-1$ then show that $q \mid p-1$.
- 10. Determine all finite groups which have exactly 3 conjugacy classes.
- 11. Let F be a field, $a \in F$, p a prime integer. Suppose the polynomial $x^p a$ is reducible in F[x]. Prove that this polynomial has a root in F.
- 12. Let V be a finite-dimensional vector space over a field F and let T: $V \to V$ be a linear transformation. Let $W \subseteq V$ be a subspace such that $T(W) \subseteq W$. Suppose T is diagonalizable. Is T restricted to W also diagonalizable?

